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ABSTRACT

Various types of pattern deformations are investigated from the syntac-
tic point of view and categorized into two major types: local deformations
and structural deformations. Random noise, distortion variations, and sub-
stitutions, of pattern primitives belong to the former; syntactic errors due
to pattern structural changes, such as primitive deletions and insertions,
belong to the latter. Every observed pattern can be regarded as transformed
from a pure pattern through these two types of deformations. An error-
correcting parsing scheme for local deformations optimum in the Bayes sense
is proposed. A corresponding recognition rule is then described, which can
be regarded as a hybrid classifier because it has utilized advantages of
both syntactic and statistical approaches to pattern recognition. When this
scheme is apblied to string and tree languages without structural deforma-
tions, it is shown that various known structure-preserved error-correcting
parsing schemeé could be considered as special cases of this general scheme.
Two structure-preserved error-correcting parsers, one for string languages,
the other for tree languages, are also presented. Finally, further
researches boncerning error~correcting parsings for structural deformations
and a complete error-correcting systems for both kinds of deformations are

suggested.
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1. Introduction

To recognize noisy or deformed patterns using the syntactic pattern
recognition approach, error-correcting parsing and classification techniques
using various decision criteria have been proposed [1-5,20]. Errors induced
on the primitives of noisy or deformed patterns usually are classified into
three types: substitutions, deletions, and insertions. If only substitu-
tion errors are considered, the error-correcting parser is said to be
structure-preserved. After an input pattern is parsed by a certain pattern
grammar, a quantitative measure, either deterministic or probabilistic, is
output by the parser to indicate a measure of possibility that the input
pattern is generated by the grammar. The decision criterion is then used to
classify the input pattern as belonging to the pattern class with.an extreme
quantitative measure, either minimum or maximum, depending on how the meas-
ure is defined. Two most widely used decision criteria are minimum-distance
and maximum-likelihood criteria, though others have also been proposed
[2,51. 1

Influenced by the linguistic types of representation which only adopts
symbolic notations as terminals, most of the existing error-correcting pars-
ing methods [1-4,20] use discrete symbols to represent structural pattern

primitives. However, it happens quite often that a primitive also contains

continuous semantic or numerical information useful for pattern discrimina-

tion purpose [5,6,71. For such cases, obviously, these parsing methods are
not appropriate, because they can not utilize continuous semantic or numeri-
cal information.

To take care of both structural and numerical information simul taneous-
ly, a deformational model for pattern primitives is introduced in this re-

port. Based on this model, error-correcting parsing and classification




techniques using the Bayse decision rule are then proposed. Various known
error-correcting parsing schemes and classification rules are compared with
the proposed techniques. A complete illustrative example is given to show

the applicability of the proposed model and techniques.
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2. A Deformational Model

In this section, we give a formal description of basic concepts for im-
ages, patterns, subpatterns, and primitives, which we will call structural
entities, used in syntactic pattern recognition from a brcader point of
view, and based on these concepts, we propose a deformational model which
will serve as a basis later for developing a Bayes error-correcting recogni-
tion system. Essentially, these concepts are described as general as possi-
ble so that they can be applied to a variety of pattern languages, and in
such a way that discrimination between syntactic and semantic informations
available from the structural entities is emphasized. 1In particular, exam-

ples are given for string and tree languages for illustrative purpose.

2.1 Basic Concepts

An observed image usually can be considered as deformed from a pure

image. For example, a smooth shape in a picture may become noisy after it

is digitized. Here the original shape is the pure image and its noisy ver-

_sion is the observed image. When similar pure images are clustered as a

pure pattern class, there corresponds a set of observed images each of which

we will call as an observed pattern. In practical applications, grammars

are often inferred, either from pure or from observed patterns, to recognize
observed images. In some simple cases, the deformations, such as noises,
existing in observed patterns can be eliminated by intensive preprocessing
such as thresholding. But in general, they can not be eliminated entirely.
This is why error-correcting parsings are necessary.

Before a class of patterns can be described by a pattern grammar, each

pattern is decomposed into smaller and simpler structural units called

primitives. Primitives should be chosen properly so that the resulting

descriptions of the patterns using grammars can be simple [7]. We call the

— - - ——— .
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description of a pattern using some fixed primitives as a structural

representation, which is, for string languages, a string (representation)

consisting of symbols each of which corresponds to a primitive, and is, for

tree languages, a tree (representation) with each of its nodes corresponding

to a primitive. ©&f course, pure primitives, pure patterns, and pure struc-
tural representations also have their corresponding observed primitives, ob-

served patterns, and observed structural representations, respectively.

2.2 Primitives
A detailed study of various kinds "of primitives used for pattern
descriptions [7-9] reveals that each primitive may contain two kinds of in-

formation, namely, the syntactic information and the semantic information.

The syntactic 1information gives a structural description of the primitive,
and the semantic information provides the meaning or numerical description
of the primitive. To be more specific, two examples are given in the fol-
lowing for illustrative purpose.

I. Primitives for string languages =--- A primitive for string
languages wusually 1is simply a symbol. Different symbols are used to
represent different primitives, such as an arc, a straight line segment, an
angle, etc., fér describing shape boundaries. But it happens quite often
that we need more information involving numerical measurements to describe a
primitive more accurately. For example, we may want to discriminate two arc
primitives by their lengths and curvatures. Then, the syntactic information
contained in these two primitives is the arc structure, and the semantic in-
formation is their respective lengths and curvatures. You and Fu [9] used
two kinds of primitives - curve segment primitives and angle primitives - to
describe shapes. The first one is a curve segment with 4 numerical features

to describe its direction, length, curvature, and symmetry. The second one




is an angle with one feature to describe the angle amplitude. These two
kinds of primitive serve as a very good example for illustrating the above
concept of primitive information.

II. Primitives for tree languages --- Similarly, a primitive for tree
languages may have any kind of primitive structure and various kinds of nu-
merical measurements on the primitive. For example, Lu and Fu [10] wused a
pixel with it gray value as a primitive to set up a tree model. Then the
primitive structure is a pixel and the semantic information is its gray
value.

Now we are ready to give a formal description of a primitive. We con-

sider a primitive a, either pure or observed, as a 2-tuple

a = (s,x)
where
s is a syntactic symbol densting the primitive structure of a, and
X = [x1,x2,...,xm] is an m-dimensional semantic vector with each X3 (i =

1,2,...,m) denoting a numerical measurement or a logical predicate,
and m > 0. When m = 0, or no semantic information is available, set
x = ¢ (empty vector).

A similar idea was also proposed by Shaw [21] and described in Fu [7].

Two remarks are in order.

I. Influenced by the linguistic represenations, the primitives used in
syntactic pattern recognition tend to be restricted to symbolic notations
which essentially only give syntactic information. Even when a continuous
type of numerical information, such as random noise, is included in the

primitives, it is often thresholded into discrete numericals which then are




denoted by a finite number of primitive symbols. Such an approach not only
decreases the discrimination accuracy due to the numerical thresholding but
also increases the number of grammar rules due to the increase of the number
of primitives (i.e. terminals). With a primitive described as above, such
weaknesses could be eliminated as will be seen later.

II. Since a primitive contains two parts of information, we obtain a
great deal of flexibility in selecting primitives. This point is also em-
phasized in [6]. Any structural unit can be selected as a primitive, and if
more properties are needed to specify the primitive, numerical or semantic
information can be invoked. Furthermore, with semantic information separat-
ed from syntactic information in a primitive, a very systematic deformation-
al model can be developed for optimum error-correcting parsing schemes which

will be described in the following sections.

2.3 Pattern Structures

To transform a pattern into a structural representation wusing primi-
tives as constructing units, we need a fixed constructing rule which we will

call a pattern structure. For example, to convert a shape into a string

representation with arcs, line segments, angles as primitives, we have to

know the starting primitive and the direction the shape boundary should be

traced. So a string structure is needed. Similarly, a tree structure is

needed to convert the set of primitives of a given pattern into a tree

representation (for example, see [5,19]1). So a structural representation of

a pattern can be considered as the arrangement of primitives according to a
fixed pattern structure. Usually, in practical applications, the number of
pattern structures used by a pattern language is finite and not too large.
In some cases, there is even only one such structure used for all structural

representations [5,10]. For string languages, strings with different

R — —
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lengths are of different string structures, and for tree languages, trees
with different number of nodes or different connecting branches are also of
different tree structures. But the number of primitives existing in a
structural representation 1is not the only discriminant factor of pattern
structures. In some cases, different implicit relations implied by the con-
catenations in a string or by the branches in a tree also define different
pattern structues, although such relations may be represented explicitly by
terminals by some pattern languages such as PDL and PLEX languages [21,22].
Now we can say that a pattern class consists of a set of patterns each
of which in turn can be transformed into a structural representation using a
set of prespecified primitives (and relations) according to one of some
fixed pattern structures for this pattern class. These structural represen-
tations can then be used to infer a pattern grammar to characterize this
pattern class. So each terminal used in the grammar is_ just a primitive
which can be described by a 2-tuple consisting of a syntactic symbol and a

semantic vector as defined in Section 2.2.

2.4 The Deformational Model

From previous discussions, it is clear that a pattern or its structural
representation w can be fully characterized by a 2-tuple w = (S,A) where
A= {aili =1,2,...,n} is a set of primitives used in w and S denotes the
pattern structure of w together with implicitly assumed relations among the
primitives. For discussion convenience in the following sections, we assume
that the subscripts for a; are numbered according to some fixed order which
is determined by the pattern structure S; when S is fixed, then this order-
ing is also fixed.

Given the structural representation w = (S,A) of a certain pure pattern

with pattern structure S and primitive set

a

D oad
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A= {a,ila_i = (5;,x5), X5 = (xi1’xi2""’xiNi)’ N; >0, i=1,2,...,n},

the structural representation of its corresponding observed pattern

w' = (S',A'), with pattern structure S' and primitive set

A'={a'1.|a'i = (8T ,x "), X E L x opee X e ), N > 0, i=1,2,...,n},
i

can be considered as being transformed from w through a series of deforma-
tions. Our deformational model categorizes all possible deformations int

two major types: structural deformations and local deformations.

I. Local deformations --- If S = §', but for some i, i = 1,2,...,n,

a; # a'i, then we say ' is deformed locally from w. In another word, a

local deformation induced on a pure pattern preserves the entire pattern
structure but deforms some primitives locally. So a local deformation

is also called a structure-preserved deformation. With respect to

strings, this simply means a length-preserved deformation.

II. Structural deformations -—- If S # S', then we say that ' 1is deformed
structurally from w. Various types of structural deformations, such as
insertions, deletions, transpositions, and permutations [11,2,12]1, have
been defined according to various kinds of structural difference between
S and S'.

In this report, we deal only with local deformations, leaving structur-

al deformations for further investigations.

2.5 Local Deformations

A deformation induced on at least one primitive of a given pure pattern

is called a local deformation. Let a, = (si'xi) be the pure primitive de-
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formed, where

X, = (xi1’xi2""'xiNi)'

and c, = (ti’zi) be one of its observed versions, where

205 s g eaiap s .
i (211’212' ’Z1N'i)

At least two types of local deformations can be identified as following:
I. Syntactic local deformation --- This is the case when ti # S5 - In
another word, when the primitive structure is changed to another one, a

syntactic local deformation is 1induced, which wusually is called a

substitution error.

'I. Semantic local deformation --- When the local deformation on a,

does not change the primitive structure but only corrupts the semantic in-

formation, i.e. when ti = s, but z, # Xi0 then it is called a semantic local
deformation. If every primitive used by a pattern has an identical primi-
tive structure, then every local deformation is semantic.

In general, we can consider a local deformation as a two-step transfor-

mation from a, = (si,xi) to Gy = (ti’zi) by the following way:

(s50%;) synt.loc.def (t5oy3) sem.loc.def (t;.2))
pure primit.ai semi-pure primit.bi observed primit.ci

where bi = (ti’yi)' called a semi-pure primifive, is created to denote one

of the syntactically local-deformed versions of (si,xi) with Y; being a

representation semantic vector for ti’ which is only created for explanatory

convenience and does not have much practical use later in our derivation of
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parsing procedures.+ When ti = s, then Yi; = X5 and only semantic local de-
‘ formations happen in the two-step transformation.

Let A = {ailai = (si,xi), i=1,2,...,n) denote all the pure primitives

used in a pure pattern. Though each a; can be deformed syntactically into a

set of semi-pure primitives D = {bij|b

: ij
a, j

each deformation a, + bij may occur with a different probability. So there

= (tij’yij)’ ij= 1’2""’ki}'

exists a conditional probability function p defined on Da for each a, such
_ i
that p(bij'ai) = p(tijlsi) is the probability for s; to be deformed into

t = 1'2"“'ki' Similarly, since each bij can be deformed semantically

i]I]

into a set of observed primitives Db
ij

zijk € Rij}' where Rij is a range for zijk’ which may consist of a finite

number of discrete elements or of an infinitive number of continuous ele-

Cesiklesje = 5025500

ments, we can define a conditional probability or density function q on Db
ij
such that q(zijklbij’ai) = q(zijkltij'si) is the probability or density for

bij = (tij’yij) to be deformed into cijk = (tij'zijk)' Therefore, from a
probabilistic point of view, a local deformation from a; = (si,xi) to
cijk = (tij'zijk) now can be interpreted as following:
p(ti-ls-) q€z:: | ts:,s:)
e PG L ijk! 13287 ¥
3 = (s;%3) SyntiToc.def. 2ij = (tij~Yij) sem.toc.def. ~Cijk - tijeZijK’-

where p(-lsi) is the conditional probability function given a, (or si) de-

fined on Da , and q('ltij'si) is the conditional probability or density
i

function given a, and bij (or si'tij) defined on D . We also assume that
ij
ai € Da', and b‘ij € Db...

i ij

To be more specific, we give two examples for the semantic local defor-

mations, assuming no syntactic local deformation is involved --- that is,

tSometimes for normally distributed z,, y; can be conveniently chosen to
be the mean value of z,.




q(zijlsi)

a; = (s;,x;) ) .

3 C.. = (si'z

sem.loc.def. ij i)

I. Random noise --- This is the case when the semantic vector Ly in a

pure primitive a, = (si,xi)’is subject to random noise corruption. So the

deformed or noisy version of Xso denoted as zij above, is actually a random
{

vector Edj with continuous density function q(-lsi). If the noise associat-

ed with 5&j is normally distributed with zero mean, then X in fact is just

the mean vector of Eij’ or x.

o, E{gij}.

II. Distortion variations --- In some cases, X; may be deformed into
only a finite number of observed versions zij' Then q('lsi) above is just a
discrete probability function defined on all possible zij'

Back to our discussion of two-step local deformations, given a pure

primitive a, = (si,xi), the probability that it is deformed locally into an

observed primitive cijk = (tij’zijk) now can be computed as

y(c lai) = lim p(ti.|s.) . q(zijkltij'si) * Az

ijk 5 31 ijk
Azijk 0

if q('ltij'si) is a continuous density function, or simply

y(cijklai) = p(tijlsi)q(zijkltij’si)

if q(°|tij'si) is a discrete probability function. And given a pure pattern
w = (S,A) with A = {ailai = (s5,x,), i=1,2,...,n), the probability that w
is deformed locally into a structure-preserved observed pattern «' = (S5,0)

with C = {cilci = (ty,2), a, Tocde?PCi » | =‘1,2,...,n} is

n
' =
Plw'|w) n y(cilai)
i=1
-  ——E— WY e
i 5 vy, L vy v o il O enmeessteseed
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n
» IL l1TO Pt lsalz;lt s * sz, ,
= Az_i

when q(‘lti) is continuous, or,

n
PCu' |w) =.£l p(tilsi)q(zilti,si) 2

when q(-lti) is discrete, if each a, is deformed independently into Civ jE==

122icasla such independence assumption for local deformations of primi-

tives was also considered by Grenander [13], Kovalevsky [14], and Fung and

Fu [(3].
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3. Bayes Structure-Preserved Error-Correcting Parsers

In this section, we derive structure-preserved error-correct parsers
(SPECP) optimum in the Bayes sense for locally deformed patterns. Given a
pattern class consisting of various pure patterns which can be generated by
a pattern grammar, we can, from statistical point of view, consider each
pure pattern together with a!l its possible locally deformed versions as a
distinct subclass of the given pattern class. Then the SPECP to be derived,
which we will call Bayes SPECP, are optimum in the sense that they are, in

addition to possessing syntactic parsing capability, just Bayes subclass

classifiers which assign each given observed pattern, according to Bayes de-
cision rule, to a subclass whose pure pattern has a maximum probability to

be deformed into the given observed pattern.

3.1 Statistical Considerations

Given an observed pattern w = (S,A) with A = {ailai = (si,xi), x; =

(x ), i =1,2,...,n) of a certain pure pattern class C which

. TR o
i17%527 £ 1Li

consists, for simplicity, of only two pure patterns wy = (S,B1) and

2 ) STt D S T EE 1 L

wy = (s,B,) with B, = {bilbi = (to,y), Y (yi1’yi2'...'yin1)' i
2.2 - - SR - ol e

1,2,...,nr and B, = {b|bS = (t5,y), y§ = (yi1,yi2,...,yinz)1 i o=

1,2...,n}, we want to assign w to one of the two pure pattern subclasses 0,

and w, according to the statistical hypothesis testing theory. Using the

2

Bayes decision rule, we get, according to the analysis for the deformational

model in the last section under the independence assumption for local defor-

mations,
Pluglw) =
1 decide w *
P(mzlw) > w, ’
or
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.~

1
P(m|u1)P(m1) ii y(ailbi;] : P(m1)
¥ -
P(wlmz)P(wz) i=1 Y(ailbf)‘l P(wz)

Fn p(siltg)q(xilsi,tgi] Plug) “1
= 5 5l "BG <« | decide - n
i=1 p(silti)q(xilsi,ti{J 2 “2

or taking logarithms,

n
1 1
5;% Cen p(silti) + an q(xilsi,ti)l + nnP(w1)

> 8% Fen pte ooy & o AT R % s
< e NIRRT P 2

decide w + e
2
where P(w1|w), P(w1|w), P(w1), P(mz) are posteriori and a priori probabili-
ties for pure pattern subclass wy and W, and p('It%), q('lsi,tg), ) = 1,2,
are as defined in the last section. When the pure pattern class C consists

of more than two patterns, the above decision rule can be extended as fol-

lowing. Let A be such that

=

- § j iy -
LY ;g% Cen pCsg|t3) + an alx,|s;,tHI PGy ,

i=1,2,...,M, with M, either finite of infinite, being the total number of

pure patterns belonging to C, then decide w + W if k is such that

— v . I . e —
S RT L GARIRE RPUI TS W i B RV " . —— R —
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- 2n ‘k = min (- on xj) .
11,2,0..,M

We call the term -&n Aj the Bayes distance B(w,mj) from w to w5, and the

the minimum Bayes distance B(w,C) from « to pure pattern class

term -2n 2

k
C.

With Bayes distances defined as above, the Bayes SPECP, constructed
from the pattern grammar Gc for a given pure pattern class C, is used to
search for a given input observed pattern o a pure pattern 0y accepted by Gc
with a minimum Bayes distance B(m,wk) = B(w,C) during the error-correcting
parsing. So our problem now is reduced to how to compute the Bayes dis-

tances -2n xj during the parsing procedure. Since the parsing is done on

each primitive at least once, there is no problem in obtaining the first
n : ;

term I [p(silt%) + 4n q(xilsi,tg)l in -%n Xj’ as will be seen later. But
i=1

how to get the a priori probability P(mj) for the pure pattern wj during the

parsing procedure is on the contrary not so obvious. The solution is to use

R S

a stochastic grammar for the pattern class C.

3.2 Stochastic Grammars for Computing Pattern Probabilities

Stochastic grammars have been introduced to take care of noisy patterns
and also to specify the probability of occurrence for each pattern accepted
by the pattern grammars [7]. The latter property is exactly what we want
for computing pattern probabilities P(wj).

To be more specific, a stochastic grammar is a grammar each of whose
production rules is associated with an occurrence probability. When a sto-
chastic pattern grammar is used to generate the structural representation of
a given pattern, a pattern occurrence probability is also generated simul-
taneously, which is the product of all probabilities associated with the

production rules used in deriving the structural representation. For de-
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tails, see Fu [7]. And for inference of production rule probabilities, see
Lee and Fu [15]. Here we only give the basic notations and definitions of
stochastic context-free grammars and stochastic tree grammars [7].

Definition 1. A stochastic context-free (string) grammar is a 4-tuples

GS = (VN,VT,PS,S), where

VN is a finite set of non-terminals,

VT is a finite set of terminals,

S 1is a start symbol,

Ps is a finite set of stochastic production rules, each of which

is of the form

Aj » agie 3 = L2eeng o 8= 2000,

where Ai €V °ij € (VT u VN)*, n, is the number of distinct production

NI

rules with Ai at left-hand side, ¢ is the number of nonterminals, and pij is

the probability associated with this production. Furthermore,

Definition 2. A stochastic context-free (string) grammar Gs is in Chomsky

normal form if each of its production rule is of the formm

P BC P

A :/ae or A+ a

where A, BA;¢ Vyr @ € Vqo

i e ——— — c
S LSS i ) R e "
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Definition 3. A stochastic tree grammar over (VT,r) in its expansion form
is a 4-tuple Gt = (VN 1] VT’ r ,P ,S), where

VN’ VT’ S are the same as defined in Definition 1,

r: VT + N, the set of nonnegative integers, is a rank function denoting the

number of direct descendants of a node with a symbol in V_ as its label, and

T

P is a set of stochastic production rules, each of which is in the form

p'ij p‘ij
Xi + X or Xi - X
e
Xi1 2= e 0
where x € VT’ Xir X920 X060 € e 1€« N;» 1<i<, n., %, Pjo Bke

the same as defined in Definition 1, and
iy
0<p.. <1 and 2: Pez =1 &
j=t Y

) =

3.3 Bayes SPECP for String Languages

We describe in the following a Bayes SPECP for context-free string
languages. Given a stochastic context-free string grammar Gs = (VN,VT,PS,S)
for a pure pattern class, assume that the terminal set VT = {ailai =

(ti’“i)' i = 1,2,...,%} contains all possible pure primitives used by the

pure patterns. For each as, i = 1,2e0est, let p('lai) = p(‘lti) be the

conditional probability function defined on Dai = (bijlbij = (uij’yij)’
; ————————b.., j = vapky *la.,b..) = °|t.,u..
8 Syn-Toc.det Vi~ I 1,2, ’k1}’ and q( |a1,b1J) q( |t1,u1]) be the
conditional probability or density function defined on Db = {cijklcijk =
; ij

(

Let

Uij22ijk’ 7 Pij Sem.Toc.def.” Cijk’ Cijk ¢ Rij*-
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k.
1

£l 2
i=1 j=1 °ij

<
- -
]
| C e

L}
T.
rithm for the Bayes SPECP is a modification of the Cocke-Yonger-Kasami pars-

denote all possible deformed primitives, and note that vT.c:V The algo-
ing scheme [16], which essentially tries to construct a parse table T for an
input observed string representation y, and then parses through the table to
obtain a pure string representation x with a minimum Bayes distance B(y,x).
The table T consists of entries tij’ 1<i<n,1<j<n-it1, where n is
the length of string y. Eacﬁ tij is a set of triplets (A,d, k), where A € VN
is an intermediate nonterminal used in deriving x, d € (0,») is part of the

Bayes distance, and k specifies the product rule used with A at the left-

hand side.

Algorithm 1. Bayes Structure-Preserved Error-Correcting Parser for String
Languages

Input: A stochastic context-free string grammar Gs =A(VN,VT,PS,S) in Chom-
sky normal form without e-productions, and an observed string representation
y € V;*, Y = CqloeesC , €. = (si,xi), e S A

Output: A pure string representation x accepted by Gs with a minimum Bayes
distance B(y,x). |

Method: Put all production rules into order and let k: A E a denote that

[+)
A » a is the kth rule in Ps.

Step 16- Construct 1:1-1 for each i, i = 1,2,...,n. Let A € VN' For every
]
A+

a. in P

k.: j s’ j = 1,2,...,nA, where a. = (t.,wj), A is the number of

] ) )
production rules each with A on the left-hand side and a terminal on the

right-hand side, let
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dij = - [&n p(siltj) + &n q(xiltj,si) + &n ij -
i=1,2,...,n. Then set
ti = {(A, diz’ k£)|diz= min dij , A€ VN} .

j=1,2,...,nA

Step 2. Construct tij' j = 2,e4.,n, inductively. Assume that tij’ has been

computsd for atl i, 1<i<n, and for all j', 1< j' <j. For every
j ' '
kj: A~ Bjcj, j = 1,2,...,nA, where A

with A on the left-hand side and two nonterminals on the right-hand side, if

is the number of production rules

there exists some m, 1<m<j, such that (Bj'ej1'hj1) 3 tim and
(cj'ejz’hjz) € ti+m,j-m’ let eij = ej1 + ej2 - an pj. Then set
tij = {(A’eiz'kl)‘eil = min ' oy A e VN}

j=1,2,...,nA

Step 3. Repeat Step 2 until tij is computed for all 1 <i<n and
Step 4. When the entire table T is completed, exam entry t1n' If there ex-

d

ists a triplet (S,d, k) in t for soﬁe d and k, then set B(y,x) = e , and

1n
the desired pure string representation x can be easily traced out from the
parse table T, starting from the kth production rule. If no (S,d, k) exists
in t1n' then input observed string representation y is not structure-

preserved; set B(y,x) = 0.

3.4 Bayes SPECP for Tree Languages

Using the minimum-Bayes-distance criterion again, we propose a Bayes
SPECP for tree languages in the following. Given a stochastic tree grammar

6, = (VNUVT,r,Ps,S) over (vT,ﬁ> in its expansive form, let V.,

L]
p('lai) = p('lti), q(.lai'bij) = q('lti,ui 35 D » and V, be all the

i

D
’
a, bij




- —

T N

-22—
same as those defined in Sec. 3L3. The algorithms for the Bayes SPECP fol-
lows the concept of tree automata [17], and is a backward procedure for con-
structing a tree-like transition table T for an input observed tree
representation B. Let the tree structure (i.e., the tree domain) of B be
denoted as DB’ then corresponding to each node b in D8 is an entry tb in T,
which consists of a set of triplets (A,d, k), where A ¢ VN is a candidate
state for node b, d is part of the Bayes distance, and k specifies the pro-

duction rule used with A at the left-hand side.

Algorithm 2. Bayes Structure-Preserved Error-Correcting Parser for Tree
Languages

Input: A stochastic tree grammar Gs = (VNUVT,r,Ps,s) over (VT,6> in its ex-

pansive form, and an observed tree repreéentation 8 with g(b) = (Sb,;b) as

its observed primitive at node b, (sb,xb) € V;.

Output: A pure tree representation o accepted by Gs with a mininum Bayes

distance B(g,a).

Method: Let t ; denote the set of triplets corresponding to the ith descen-

bo
dant of node b.

Step 1. For each node b in 8 such that r(g(b)] = 0, add to t, @ triplet

(A,d, k) with

d=-L[&n p(sbltk) + 4n q(xbltk,sb) + n pd
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Step 2. For each node b in 8 such that r[(B8(b)] = N # 0, add to tb a triplet

(A,d k) with

ds = - [an p(sbltk) + on q(xbltk,sb) + n ka

if

A~ .ak
£ X
vA1..‘.AN

with a = (tk,uk) is the kth production rule in PS and (A1,d1,k1) €t

(Rprdysko) €t o puee, (Adi k) €t o

Step 3. For any two triplet (B1,d1,k1), ‘Bz'dz'kz’ in each tb’ delete the

b1’

former if d1‘3 d2' or the latter if d, < d

1 2°
Step 4. vRépeat Steps 1-3 until all nodes in B have been processed.

Step 5. Exam to, the root entry of the transiticn table T. If (S,d, k) € t
d

0

for some d and k, then set B(B,a) = e , and the desired pure tree represen-
tation o can be easily traced out from T, starting from the kth production
rule in Ps' If no (S,d,k) exists in to, then the input observed tree

representation 8 is not structure-preserved; set B(8,a) = 0.

3.5 Comments on Various SPECP and Least-Square-Error Distance Criteria

Fung and Fu [3] have proposed a maximum—likelihood SPECP for sicing
languages, but the grammars used are nonstochastic, so their SPECP is just a
suboptimum one under the assumption that all pattern subclasses occur with
an equal probability. SPECP using stochastic grammars has been proposed by

Fury and Fu [18]1, Lu and Fu [10,201, and Thompson [2], but from the view
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point of our deformational model, their SPECP for substitution error only
takes care of syntactic local deformations, and so limit their applicability
to pattern classification problems where the semantic information, especial-
ly when it 1is continuous, is contained in the pattern primitives for
discrimination purpose. Of course, these SPECP still can be used to handle
continuous types of semantic information by thresholding them into finite
discrete cases, but obviosuly this will decrease the error-correcting capa-
bility of the SPECP, as mentioned previously in Sec. 2.2, and as will be
shown by an example in Sec. 4.1.

Next, SPECP for string and tree languages using the minimum-distance
criterion have also been proposed [1,4]1. In addition to being limited to
syntactic local deformations, these SPECP aré sfatistically optimum only
under very special conditions, although they are convenient and important in
practical applications when deformation probabilities or density functions
are difficult to infer.

Finally, we propose in the following a new criterion, namely, the

least-square-error (LSE) distance criterion for the SPECP, which is a spe-

cial case of the minimum-Bayes-distance criterion but is useful for semantic
local deformations.

It happens sometimes that the observed semantic vector in a primitive
is normally distributed, especially when it is computed with random toise.
Assuming that no syntactic local deformation involves, we want to derive the
Bayes distance between a pure pattern w = (S,B) and one of its normaliy a¢-

formed observed patterns, w' = (S,A). If A = (ailai = (s5,%50,

x
I

s (x“,xiz,._..,xiN), i= 1,2,--.,) and B {bilbi (54,‘11-].‘,

W, = ("i1'“12""'“iN)' i=1,2,...,n), and assume the following conditions:




(1) Component random variables x1.j of x; are all independent with
mean “ij’ j =1,2,...,N. An example for this case happens

when every X5 is corrupted with random noise with zero mean.

(2) Xes

function

is distributed according to the following normal density

X = MWess
£ Gr) o s | I | (J-a——l)2 .
13 Vor % & ij

(3) Pure pattern w has the same probability to occur as any other,
so that P(wj) is a constant for every pure pattern mj.

Then we get the Bayes distance from w' to w as

B/'(u',w) == 2n A

n
= - 1;' Cen pCs.]so) + tn alx;]s;,s:)] = tn P(w)

n N
= 3 (Y en f..(x..)) = an P(w)
=1 5= A

n N Xes = W
=K"’EZ[%('_1'J‘¢,_,,—lJ')2+“"°ij]'
i=1 j=1 i)

where K is a constant, and as far as discrimination is concerned, we cai: de-

fine the normal ized square-error distance as
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O..

n N X5 = Wis o
Byta'yw) = 3, 3 [—D 4203,
i=1 =1 ij .

and the (unnormal ized) square-error distance as

N
(x..
=

Bz(w',w) = ii "ij)
i=1

which is vatid under a further assumption that all oij =1. A SPECP wusing

the normalized or unnormalized least-square-error (LSE) distance criterion

is called a normalized or unnormal ized LSE SPECP. These two kinds of LSE

SPECP fér tree languages have been used by Tsai and Fu [5] for the segmenta-

tion and recognition of textures corrupted with random noise, and the

results show their applicability with the normalized LSE SPECP better than

its unnormalized version.

-
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4. Bayes Error-Correcting Recognition System - A Hybrid Pattern Classifier

Given m pattern classes C1,C2,...,Cm of pure images and their pattern
grammars G1, GZ""’ Gm, after a given input observed pattern w is parsed by
all the Bayes SPECP of the grammars, we get a set of minimum Bayes distances
B(m,C1), a(w,cz),..., B(w,Cm). Actually, these distances are just the nega-
tive logarithms of the conditional probabilities or densities of w given

that w € Ci, or
p(wlci) = EXPL- B(w,Ci)J ’

i=1,2,...,m. Our classification problem is to assign w to one of these m
classes, which has a highest possibility to accept w as its observed pat-
tern.

Again, we can apply the Bayes decision rule to get

P(C. |w) = max P(C.|w) decide w =+ C, ,
L » 1 L
i=1,2,.0.,m

or

P(wICL)P(Cl) = max p(w|C.)P(C.) decide w + C, ,
. 1 1 L
i=1,2,.c.,m
where P(Ci) is the a priori probability for pattern class ¢ i = 1,2, ,Ms
We call this interclass Bayes classifier together with the intraclass Bayes

SPECP a Bayes error-correcting recognition system, compared to the

maximum-likelihood classification system set up originally by Fung and Fu

[3]. Such a Bayes error-correcting recognition system essentially has also
been proposed by Lu and Fu [20] and Fung and Fu C18], but, as mentioned in
Section 3.5, the error-correcting capability for substitution errors of

their system can only take care of syntactic local deformations. The pro-
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posed system here can be considered as a generalization of theirs. Note
that in the proposed system, the Bayes decision rule has been used twice for
recognition of observed pattern primitives and for classification of the en-
tire observed pattern, and SPECP are used to perform the stochastic syntax
parsings of input pattern structural representations. So the recognition
system can be regarded as a hybrid pattern classifier because advantages of
both syntactic and statistical pattern recognition techniques have been
utilized.

Computationally, this system requires more computer time in computing
the Bayes distances during parsing if both syntactic or semantic local de-
formations are involved, but it saves some computer time by avoiding thres-
holding continuous semantic information existing in the primitives.

Compared with the syntactic recognition approach using stochastic gram-
mars only ([7,15], the proposed deformational scheme can be regarded as a

special type of stochastic transformational grammars which is expected to

handle complex noisy input patterns where simple stochastic grammars may not

be adequate to apply [3].

4.1 An Illustrative Example

A complete example for string languages is given in this section to il-
lustrate the applicability of the proposed Bayes error-correcting recogni-
tion system and its superiority to other error-correcting systems which han-
dle continuous semantic information by thresholding it into finite discrete
cases.

Assume that we have two pure pattern classes. One pattern class C1
consists of two equilateral triangles Waqs Wy2s aS shown in Fig. 1(a), and
the other class C2 consists of two other different equilateral triangles

Wyqs Wyy @S shown in Fig. 1(b). The primitives used which are fixed-length

LB ASEE I A - S S S N— -~ — -y
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line segments are shown in Fig. 1(c).

fig.1(b) ig.1(c)

Also assume the following probability values: P(C1) = 0.5, P(CZ) = 0.5,

P(m11|C1) = 0.60, P(w ) = 0.40, P(w21|C2) = 0.80, P(w = 0.20. Two

121¢4 221¢
stochastic pattern grammars 61, GZ’ consistent with these probabilities for

c1, CZ' respectively, are as following:

61 = pnqoVyqrPrSyp)
Vyq = A,B,C,D,A,,B,,C .0,
VT1 = {a1,a2,a3}
P 3
1 0.6
S, + AD 1))
0.4
S, + A, ()
BV
D + BC 3)
1.0
Ay + AA %)
1.0
b, + B,C. (5)
Yioa
B, - BB 6)
1.0
¢, = O "
1.0
A+ a (8)
1.0
B » a (9)
1.0 * -
cC =+ a3 10) j
Al * e i s i . Iw‘ _i =
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and

2 = WnorVyarParSy)

Vy2 = (A.8,C,0,A,,8,,C,,0,)
Vpp = {b by ,bo)
P, =
2 0.8
S, + AD (D
0.2
S, + A0, (2
P
D + BC (3
1.0
A - M
1.0
D, - B.C, (5
A
B, - B8 (&)
1-0
¢, + (D
1.0
AL b, 8
1.0
¥ 9
1.0 2
C - by 0.

To use the Bayes SPECP of Algorithm 1 for illustrative purpose, the
above two grammars are inferred in their context-free forms, al though
simpler finite-state grammars can certainly be used. They are also in Chom-
sky normal form.

Now assume that each pattern w35 (i =1,2, j =1,2) is subject to both
syntactic and semantic local deformations such that each line segment in w. s
is deformed independently. The semantic local deformation is induced only
on the direction of each line segment. And each line segment can be syntac-
tically deformed into a curve segment with a fixed. curvature and a fixed
length but with a variable direction. So we can use the 2-tuple (L,5) and

(C,8) to characterize the pure primitives - line segments, and the deformed

primitives - curve segments, respectively, where L and C are syntactic sym-

R < L ilis 3 = i“ =
3 AE
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bols, and 8 denotes the one-dimensional semantic vector --- the direction of

the primitives with

respect to x-axis. So we have all the 2-tuples for the

pure primitives shown in Fig. 1(c) as

a, = ,30% b, = (L,0%
a, = (L,150% b, = (L,120%
ag = (L,270%) by = (L,240% .

And we assume that each a,i (i

1,2,3) can be deformed syntactically into a

curve segment with probability 0.1, and that each bi (i =1,2,3) can be de-

formed syntactically into a curve segment with probability 0.13. Further-

more, each line or curve segment is semantically deformed on its direction ©

approximately with a normal distribution as shown in the following data (for

notation, see Sec. 2.5):

0, = {agy

where o
3

with l:>(a'i

5 =

o, =1{b

b.
i

where eb

i1

=9 = (L’eai) r 85 ° (C,eai)}

30° + G- -+ 120°

1Iai) = 0.9, p(aizlai) = 0.1
1,2,3.

by = (L,ebi) s by = (c'ebi)}

Gi-1) «.120°

i

with p(b,,|b,) = 0.87 , p(b,,lb,) = 0.13

i

=1,2,3.

L APRPRG I L TIRL e
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= = oo ot
Pay; T Thajklaije = 55000 4 l9y i) 2802
where
i= 1,2,3, i =1,2,
Sj =L when j =1
=C when j =2,
and
P ’ e “a; |2
q(a a..,a.) = EXPL- = ]
Lo R 2n o 2 a
a
with
o, =8%, 6 =30+ (i-1) - 120° .
a a,
oty

Dbij = {bijklbijk = (sj,ok) ~ Iek - °bi|-5 40

where §=1,2,3 , §=1,2
Sj =L when j =1
=C when j =2,
and

tMathematically, there is no limitation on the value of sk' but for com-

putational convenience, let's assume so.

CVPAGy. L




- 33 -

and

=10° , oy = Ci=1) 120° .

b :
1

The 6 semi-pure primitives, i.e., the 6 curve segments corresponding to
a350 3550 azye and b12, b22' b32 are shown in Fig. 2(a). Two possible ob-
served patterns deformed from Wy, wy are shown in Fig. 2(b) and Fig. 2(c),

respectively.

jo TR ¥
14
N
b2 b Bp
Fig.2(a) Fig.2(b) Fig.2(c)

Now suppose we want to classify the deformed pattern w' shown in Fig.

2(c) with the following string representation:

W B ECLCLC,CE

1¢2°3%4,°5%
where
¢q = (L15%), ¢, * w1359 ,
ey = (0,159, cg = (L,2557) ,
c5 = (c,135%, cg = c,255%) .

At first, we apply the Bayes SPECP for grammar G1 and G2 to w' respectively,

by using the algorithm proposed in Sec. 3.3. When finished, we get the fol-
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lowing two parse tables T1, T2 for G1 and G2' respectively. Since S1 is in

t16 of T1, and 82 in t16 of T2, w' i1s accepted by classes C1 and C2 with

minimum Bayes distances d1 = 36.68 and d2 = 34.19, respectively.

(51,36.68,2)

¢ ¢

® ¢ (01,23.84,5)

$ $ ¢ ¢
(A1,11.92,4) ¢ (81, 11.92,6) 3 (c1,11.92,?>

S Clin SR e |
(A,4.86,8) | (A,7.06,8) (8,7.06,9) (C,4.86,9) |(C,4.86,10) {(C,7.06,10) ;
(Parse Table T1)

(52,34.19,2)

¢ ¢ =

= i, vt sio oL

) ¢ (01,21.72,5)

¢ % ¢ ¢
Eﬁ1,10.86,4) ¢ (91,10.86,6) ¢ (C1,10.86.7)
fe Nt

(A,4.48,8) !(A,6.38,8) (B,6.38,9) (B,4.48,9) |(C,4.48,10) ((C,6.38,10)
(Parse Table TZ)
Next, we apply the interclass Bayes decision rule to get
R — e ;
N et i “‘ﬁ--i-hﬁiﬁﬁiii----llllllllllllll“
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P(C1|w') = p(m'|C1)P(C )

1
EXP(-36.68) °* 0.5

5.88 x 1017

P(C,lu') = EXP(-34.19) * 0.5

= 70.87 x 10717

So we decide that w' belongs to Cz. This completes our illustrative example
for the proposed Bayes error-correcting recognition system.

In the following, we threshold the continuous 6 values into intervals
as is usually done by other error-correcting schemes, and show how contrary
decision can be made for the previous input pattern w'. Since the proposed
Bayes recognition system always gives optimum decision in the Bayes sense,
we thus have shown its better performance than other systems using thres-
holding approaches on continuous sematic information.

If we threshold 8 values starting from 0°+ in steps of‘ 20° for class
C1, and from 300'r in steps of 20° for CZ' then Da. and Db. can be changed

ij ij
to the following:

Ml S {aijle = 1,2,3,4, a,

= (S.,0,), (k=2)-20° < o
ij 17K =

-6, < (k=1):20"

jk K i

with discrete probabilities

0.01, K
aCay5elagioa) = o649,

1,4
2,3’

t+Starting from different points to threghold iso just for convenience,
because the directions for a5, b1 are 0" and 30°.

e =
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— = - - L ] o - - L] o
Dbij = {bijle 1,2,3,4, b_ijk (Sj,eK), (K-2)+20 f_eK ebi < (K-1)+207}
with discrete probabilities

0.02,
albysilbi5003) = 948,

x
]

2,3,

with Sj the same as defined previously. And by convention, only the follow-

ing probabil ity values are used in parsing [3]:

0.009, j =1, K=1,4
0.461, j =1, K=2,3
ratagsla) = atagglagad plaiad =90 001 522, k=1,4
0.049, j =2, K=2,3
0.0174, j =1, K=1,4
0.4176, § =1, K=2,3
FAC; 5 Ib;) = albys, Ibshy PO ;1) =g 0026, =2, Kk =1,4
0.0624, j =2, K=2,3

i =1,2,3. The previous data shows that each a, or bi can be deformed into
8 different observed primitives with different probabilities, in which four
are line segments and the other four are curve segments.
Now again use the Bayes SPECP proposed in Sec. 3.3 for G1, 62 to parse
'

w , respectively. Note that after thresholding the & values in w' and

transforming into string representations, we get

w' = 844399239223221333139373

for class C1, or

o' = by42b9220222021203120322

for class CZ‘ Also note that the term [tn p(si|tj) + n q(xiltj,si)] in Al-

R R i y -
e o Lt 2 x .. "
.o N ” ‘-------hiﬁﬂi---lIllllllllll.‘
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gorithm 1 should be replaced by tn Efcilaj) before the algorithm is applied

Eg_ggr discrete case here, where Gy aijk or bijk now.
(S1,12.44,2)
¢ ¢
¢ ¢ (D1,7.68.5)
® ¢ ¢ ¢
RGN AN b LT _+m.____~__ e ot B i LIS
|
(A1,3.84,4) ¢ (81,3.84,6) é ¢ (C1,3.84,7)
| | !
(A,0.82,.8) (A,3.02,8) i(B’3'02'9) i(B,0.82,9) (C,0.82,10) (c,3.02,10)

(Parse Table T,)

(5,,12.53,2)
¢ ¢
o ; o (0,,7.28,5)
i 1
L] ¢ ¢ ¢ {
s
| i
(A,,3.64,4) ¢ (B,,3.64,6) ¢ §<c1,3.64,7>
E o — - e, - cotmmetens = - ‘; ————— e e~ -
| (A,0.87,8) (A,2.77,8) | (B,2.77,9) | (B,0.87.9) .(C,0.87.10) i(c,2.77,1o;

—o L SN et e

(Parse Table Tz)

From the above tables, we get

S ———— - = R~ Sy e . ———
s
" s—
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P(C1|m') = EXP(-12.44) + 0.5

=1.98 x 107%

P(Cylu") = EXP(-12.53) « 0.5

=1.81 x 107°

So we decide w' belongs to C,!

1
A careful study reveals that such contrary conclusion to the previous
Bayesian decision w' + C2 is due to the rough thresholding used. Using

smal ler intervals in thresholding will improve the result, but never be

better than our proposed system which has minimum probability of errors for

recognition of primitives due to the use of the Bayes rule in the error-

correcting parser.

-

e . - g
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S. Concluding Remarks

Bayes error-correcting recognition systems using Bayes error-correcting
parsers and Bayes interclass decision rule have been proposed both by Fung
and Fu [18] and by Lu and Fu [20]. The proposed system in this report can
be considered, from the viewpoint of local deformations, as a general ization
of theirs in the aspect of semantic information, which is more relevant for
practical pattern classifications where both structural and numerical infor-
mations are available for primitive discrimination, as emphasized by several
investigators [13,19,61]. Further investigations should be directed to in-
clude error-correcting capability for structural deformations under the for-
malism of the proposed deformational model and thus set up a more complete

error-correcting recognition system for more practical applications.
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